Auditory training improves neural timing in the human brainstem.
نویسندگان
چکیده
The auditory brainstem response reflects neural encoding of the acoustic characteristic of a speech syllable with remarkable precision. Some children with learning impairments demonstrate abnormalities in this preconscious measure of neural encoding especially in background noise. This study investigated whether auditory training targeted to remediate perceptually-based learning problems would alter the neural brainstem encoding of the acoustic sound structure of speech in such children. Nine subjects, clinically diagnosed with a language-based learning problem (e.g., dyslexia), worked with auditory perceptual training software. Prior to beginning and within three months after completing the training program, brainstem responses to the syllable /da/ were recorded in quiet and background noise. Subjects underwent additional auditory neurophysiological, perceptual, and cognitive testing. Ten control subjects, who did not participate in any remediation program, underwent the same battery of tests at time intervals equivalent to the trained subjects. Transient and sustained (frequency-following response) components of the brainstem response were evaluated. The primary pathway afferent volley -- neural events occurring earlier than 11 ms after stimulus onset -- did not demonstrate plasticity. However, quiet-to-noise inter-response correlations of the sustained response ( approximately 11-50 ms) increased significantly in the trained children, reflecting improved stimulus encoding precision, whereas control subjects did not exhibit this change. Thus, auditory training can alter the preconscious neural encoding of complex sounds by improving neural synchrony in the auditory brainstem. Additionally, several measures of brainstem response timing were related to changes in cortical physiology, as well as perceptual, academic, and cognitive measures from pre- to post-training.
منابع مشابه
Musical experience offsets age-related delays in neural timing.
Aging disrupts neural timing, reducing the nervous system's ability to precisely encode sound. Given that the neural representation of temporal features is strengthened with musical training in young adults, can musical training offset the negative impact of aging on neural processing? By comparing auditory brainstem timing in younger and older musicians and nonmusicians to a consonant-vowel sp...
متن کاملA Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...
متن کاملRelationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians.
Musicians have a variety of perceptual and cortical specializations compared to non-musicians. Recent studies have shown that potentials evoked from primarily brainstem structures are enhanced in musicians, compared to non-musicians. Specifically, musicians have more robust representations of pitch periodicity and faster neural timing to sound onset when listening to sounds or both listening to...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Behavioural brain research
دوره 156 1 شماره
صفحات -
تاریخ انتشار 2005